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VI. The Universe as a Function of Redshift

The Robertson-Walker metric has the form

ds2 = −dt2 +R2(t)
[
du2 + S2

k(u)dΩ2
]
. (6.1)

(Remember that the Ω here is not the density parameter Ω of the previous chapter;
Ω is serving double duty, but the context should always make it clear as to which is
intended.) Remember that t = cosmic time, u = comoving radius, Ω is a shorthand
designation for the angular coordinates θ and φ, and R is the linear curvature
radius of the universe. Sk is either sin or sinh depending on whether the universe
has spherical or hyperbolic geometry.

The goal of this chapter is to calculate the properties that an observer would
measure when viewing objects at large distance. Although the R-W metric describes
how we measure distances times in a surface of constant proper time, that surface
is not realizable in any global laboratory (i.e., Lorentz) frame except in the special
case of an empty universe. Because of light travel time effects, an observer viewing
a distant object will necessarily be receiving the light at a proper time that is
later than when the light was emitted; in the interim, the universe has expanded.
Thus, for example, the linear size of an object at large comoving distance u that
subtends an angle θ is not R0Sk(u)θ (R0 being the curvature radius today) but
rather RiSk(u)θ, Ri being the curvature radius at the time that the light was
emitted. Observationally, we do not measure the distance to an object directly but
rather its recession velocity or redshift z. Therefore, we need to relate z to both the
comoving distance of an object u and the time at which the light was emitted ti.

Redshift

The redshift z is defined in terms of the wavelength of light that is Doppler
shifted due to the motion of an object. Let λe be the laboratory rest wavelength
of some emission or absorption line in the spectrum of an object. If the object is
moving relative to some observer, the wavelength measured will be Doppler-shifted
to a value λr. The redshift is defined to be z = (λr−λe)/λe. In terms of frequency
ν = c/λ, we also have z = (νe − νr)/νr. In principle we could also convert z to a
linear velocity using the formulae of special relativity, but there will be no need to
have that velocity explicitly.

Relation between R, H, and q and redshift

The first task is to relate the redshift z to the curvature radius Ri at the time
that light from that object was emitted. Consider an F.O. who is viewing the
universe while sitting at the coordinates u = 0, t = t0. All light rays that it receives
travel along radial, null geodesics: ds2 = −dt2 +R2du2 = 0. The path travelled by
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a light ray is then given by

du

dt
=

1

R
or u =

∫ t0

ti

dt

R
. (6.2)

A very useful result can be derived without integrating this equation explicitly.
Look at two closely space rays that represent two successive pulses of light from a
source. Let ε be the time interval between the two pulses as measured by the source
and ε′ be the time interval as measured by the observer. The comoving distance
between the source and observer is constant for all time, so we have

u =
∫ t0

ti

dt

R
=
∫ t0+ε′

ti+ε

dt

R
. (6.3)

If ε is small compared with t0−ti, then to a good approximation the second integral
I2 is related to the first integral I1 by I2 = I1 + [ε′/R(t0)]− [ε/R(t0)]. But we must
have I1 = I2, so

ε

R(ti)
=

ε′

R(t0)
. (6.4)

If we are looking at an emission line from some source, then on dimensional grounds
we have ε ∝ (1/ν) ∝ λ and we find that

ε

ε′
=
R(ti)

R(t0)
=

1

1 + z
. (6.5)

Thus we have a relation between the curvature radius at the time of emission and
the redshift of an object.

The next step is to derive analogous expressions for q and H as a function of
redshift. The derivation of H vs. z can proceed as follows. Start with the Lemaitre
equation,

H2 =
8πGρ

3
− k

R2
. (6.6)

Solve this for k:

k = R2
[
H2 − 8πGρ

3

]
. (6.7)

At z = 0, t = t0, we have R = R0, H = H0 and ρ0 = 3Ω0H
2
0/8πG. At arbitrary z,

we have R = R0/(1 + z) and ρR3 = ρ0R
3
0 or ρ = ρ0(1 + z)3 = 3Ω0(1 + z)3H2

0/8πG.
Since k is a constant regardless of epoch, we have (from two applications of Eq.
[6.7]):

k = R2
0H

2
0 (Ω0 − 1) = R2

0

H2
0Ω0(1 + z)3 −H2

(1 + z)2
. (6.8)

Solving for H, we find

H = H0(1 + z)
√

1 + Ω0z. (6.9)
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Finally, we can get q vs. z fairly easily. Start with the definition of Ω:

Ω = 2q =
8πGρ

3H2
. (6.10)

Using Eq. (6.9) for the variation of H with z and the relation ρ = 3Ω0(1 +
z)3H2

0/8πG, we find that

q =
q0(1 + z)

1 + 2q0z
. (6.11)

Note that in the limit z → ∞, q → 1/2 regardless of the value of q0 today.
Conversely, if q0 differs even infinitesimally from 1/2 at some time, then at later
times it will eventually tend to 0 or ∞. We will return to this point in a later
chapter.

Relation between u and redshift

The relation between u and z is found by integrating Eq. (6.2). This can be
accomplished in a straightforward fashion by use of Eq. (5.4). As was noted im-
mediately after those equations were derived, we have dt = Rdθ (remember that
θ is the “conformal time” or a dimensionless age of the universe). Then we have
immediately that

u =
∫
dθ = θ0 − θi, (6.12)

where the subscript 0 refers to now (are you listening, Yogi?) and the subscript i

refers to the time that the light was emitted. The relation between θ and z follows
immediately by combining Eqs. (5.22) and (6.11). We find

Ck(θ0) =
1

q0
− 1

Ck(θi) =
1

q
− 1 =

1− q0(1− z)
q0(1 + z)

.

(6.13)

By taking the inverse cosine of these expressions and inserting into Eq. (6.12),
we get an explicit relation between z and u. We shall defer doing so as further
manipulations will be required later on that will undo the inverse cosine.

Note that the relation between z and θ (or look-back time) depends on q0 and
has the following sense: for a given redshift z, the difference between the time now
and the time of emission (t0− ti) is bigger for a low q0 universe than it is for a high
q0 universe. Qualitatively, this occurs because in a low q0 universe, the age of the
universe is roughly 1/H0, whereas in, say, a q0 = 1/2 universe, the age is only 2/3
as much.

An alternate form of Eq. (6.3) is sometimes useful when dealing with more
complex cosmologies, such as those with dark energy, where the solution in time
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does not admit a simple form involving conformal time. We have du = dt/R. From
the definition of the Hubble constant H = (1/R)dR/dt, we have dt = dR/(HR).
From Eq. (6.5), we have R = R0/(1 + z). Combining, we can write R0du = dz/H.
With our expression for H(z), we can integrate this equation to once again compute
u as a function of z:

R0u =
∫ z

0

dz′

H(z′)
. (6.14)

Angular Diameters and Angular Diameter Distance

Consider the process of observing a distant galaxy with redshift z that subtends
an angle φ. We ask the question, what is the true linear size of the galaxy. As for
the case of special relativity, the process of making a measurement requires that
we specify two points in 4-dimensional space-time and compute the proper distance
between them. In this case, the only subtle point is that the time coordinate t for
the two events (in this case, two points on opposite sides of the galaxy) is ti, the
time of emission, rather than t0, the time now. The linear separation is given by

s = RiSk(u)φ. (6.15)

It turns out to be convenient to define an intermediate quantity Z by

Z = R0H0Sk(θ0 − θz) =
1√

(2q0 − 1)kSk(θ0 − θz)
. (6.16)

We have Sk(θ0 − θi) = Sk(θ0)Ck(θi) − Sk(θi)Ck(θ0). Upon substituting Eq. (6.13)
and using simple trig identities, we find

Z =
1

q2
0(1 + z)

{
q0z + (q0 − 1)[

√
1 + 2z0z − 1]

}

=
z

1 + z

[
1 +

z(1− q0)√
1 + 2q0z + 1 + q0z

]
.

(6.17)

Equation (6.15) then becomes (with the aid of Eq. [6.5])

s =
R0Sk(θ0 − θi)φ

1 + z
=

Zφ

H0(1 + z)
. (6.18)

We define the angular diameter distance of an object to be

DA =
Z

H0(1 + z)
. (6.19)
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The angular diameter of a standard yardstick as a function of redshift is shown
in Fig. 6.1 for three different values of q0. The angular diameter for distant objects
is larger than it would be in a Euclidean universe. Two causes are at work. The first
is essentially just aberration. The second is the non-Euclidean relationship between
radius and circumference in all but a k = 0 universe.

Luminosities, fluxes, and surface brightnesses

The luminosity or flux from a source can mean one of several things: it can be
the total or bolometric luminosity LBol (erg sec−1), photon luminosity LP (photons
sec−1), or monochromatic luminosity Lν (erg sec−1 hz−1). We shall consider each
in turn.

The easiest to compute is the photon flux. Suppose a source at redshift z and
comoving distance u emits δN photons in a time interval δti. After the photons
have traveled the distance u, they are spread over a surface area A = 4πR2

0S
2
k(u),

where R0 is the curvature radius at the time t0 when they arrive at an observer.
The time it takes to collect the photons is δt0 = δti(1 + z). The photon flux is
define as

FP =
d2N

dtA
=
dN/dt0
A

=
dN/dti

4πR2
0S

2
k(u)(1 + z)

, (6.20)

with units of photons cm−2 s−1. Substituting Z for several of the parameters, we
find

FP =
LP

4π (Z/H0)
2

(1 + z)
. (6.21)

We define the luminosity of an object to be

DL = (Z/H0)(1 + z). (6.22)

It is (1 + z)2 times the angular diameter distance.

The bolometric luminosity is defined as LBol = (hνi)dN/dti, where νi is some
characteristic frequency of the source. At the receving end, the bolometric flux is

FBol =
hν0 (dN/dt0)

A
=

hνi (dN/dti)

4πR2
0S

2
k(u)(1 + z)2

, (6.23)

with units of erg sec−1 cm−2.

The monochromatic luminosity is defined to be dL/dν and is a function of fre-
quency; similarly, the monochromatic flux is defined to be dFBol/dν. The observed
monochromatic flux at frequency ν is given by

Fν =
Lν(1+z)

4πD2
L

. (6.24)
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The appropriate equation to use depends on the type of observation being made.
For example, most optical observations measure the flux in a limited bandpass and
hence sample the monochromatic luminosity most closely; we will consider such
observations more carefully in the next chapter.

Note that
Iν
ν3

=
Iν(1+z)(1 + z)3

(1 + z)3ν3
1+z

=
Iν(1+z)

ν3
1+z

=
Iν′

ν′3
. (6.25)

So Iν/ν
3 is an invariant. This result is independent of cosmology. As an example,

consider observing a blackbody of temperature T that is at a redshift z. The
intrinsic intensity of a blackbody is given by

Iν =
2hν3

c2
1

exp
(
hν
kT

)
− 1

. (6.26)

The observed intensity is

Iν =
Iν(1+z)

(1 + z)3
=

2hν3

c2
1

exp [hν(1 + z)/kT ]− 1
. (6.27)

So we see a blackbody spectrum with temperature T/(1 + z). Equivalently, TBB ∝
1/R.

The above discussion shows that the concept of “distance” becomes ill-defined
when making observations of objects at large redshift. The most sensible definition
of distance might be R0u where u is the comoving distance of an object correspond-
ing to redshift z. This is the proper distance that would be measured today by
the cooperative effort of many F.O.’s placed along the path between the observer
and the distant object. However, this distance corresponds to neither the angular
diameter distance nor the luminosity distance. Furthermore, the relation between
u and z depends on q0. On the other hand, one can make use of this dependence
to devise tests for measuring q0. This will be one subject in the next chapter.


